Extensions 1→N→G→Q→1 with N=C3×C5⋊D4 and Q=C22

Direct product G=N×Q with N=C3×C5⋊D4 and Q=C22
dρLabelID
C2×C6×C5⋊D4240C2xC6xC5:D4480,1149

Semidirect products G=N:Q with N=C3×C5⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C5⋊D4)⋊1C22 = S3×D4×D5φ: C22/C1C22 ⊆ Out C3×C5⋊D4608+(C3xC5:D4):1C2^2480,1097
(C3×C5⋊D4)⋊2C22 = D5×D42S3φ: C22/C1C22 ⊆ Out C3×C5⋊D41208-(C3xC5:D4):2C2^2480,1098
(C3×C5⋊D4)⋊3C22 = S3×D42D5φ: C22/C1C22 ⊆ Out C3×C5⋊D41208-(C3xC5:D4):3C2^2480,1099
(C3×C5⋊D4)⋊4C22 = D30.C23φ: C22/C1C22 ⊆ Out C3×C5⋊D41208+(C3xC5:D4):4C2^2480,1100
(C3×C5⋊D4)⋊5C22 = D2013D6φ: C22/C1C22 ⊆ Out C3×C5⋊D41208-(C3xC5:D4):5C2^2480,1101
(C3×C5⋊D4)⋊6C22 = D2014D6φ: C22/C1C22 ⊆ Out C3×C5⋊D41208+(C3xC5:D4):6C2^2480,1102
(C3×C5⋊D4)⋊7C22 = D1214D10φ: C22/C1C22 ⊆ Out C3×C5⋊D41208+(C3xC5:D4):7C2^2480,1103
(C3×C5⋊D4)⋊8C22 = S3×C4○D20φ: C22/C2C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):8C2^2480,1091
(C3×C5⋊D4)⋊9C22 = D2024D6φ: C22/C2C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):9C2^2480,1092
(C3×C5⋊D4)⋊10C22 = D2026D6φ: C22/C2C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):10C2^2480,1094
(C3×C5⋊D4)⋊11C22 = D2029D6φ: C22/C2C2 ⊆ Out C3×C5⋊D41204+(C3xC5:D4):11C2^2480,1095
(C3×C5⋊D4)⋊12C22 = C2×Dic5.D6φ: C22/C2C2 ⊆ Out C3×C5⋊D4240(C3xC5:D4):12C2^2480,1113
(C3×C5⋊D4)⋊13C22 = C2×C30.C23φ: C22/C2C2 ⊆ Out C3×C5⋊D4240(C3xC5:D4):13C2^2480,1114
(C3×C5⋊D4)⋊14C22 = C2×S3×C5⋊D4φ: C22/C2C2 ⊆ Out C3×C5⋊D4120(C3xC5:D4):14C2^2480,1123
(C3×C5⋊D4)⋊15C22 = C2×D10⋊D6φ: C22/C2C2 ⊆ Out C3×C5⋊D4120(C3xC5:D4):15C2^2480,1124
(C3×C5⋊D4)⋊16C22 = C15⋊2+ 1+4φ: C22/C2C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):16C2^2480,1125
(C3×C5⋊D4)⋊17C22 = C6×D4×D5φ: C22/C2C2 ⊆ Out C3×C5⋊D4120(C3xC5:D4):17C2^2480,1139
(C3×C5⋊D4)⋊18C22 = C6×D42D5φ: C22/C2C2 ⊆ Out C3×C5⋊D4240(C3xC5:D4):18C2^2480,1140
(C3×C5⋊D4)⋊19C22 = C3×D5×C4○D4φ: C22/C2C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):19C2^2480,1145
(C3×C5⋊D4)⋊20C22 = C3×D48D10φ: C22/C2C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):20C2^2480,1146
(C3×C5⋊D4)⋊21C22 = C6×C4○D20φ: trivial image240(C3xC5:D4):21C2^2480,1138
(C3×C5⋊D4)⋊22C22 = C3×D46D10φ: trivial image1204(C3xC5:D4):22C2^2480,1141

Non-split extensions G=N.Q with N=C3×C5⋊D4 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×C5⋊D4).C22 = C15⋊2- 1+4φ: C22/C1C22 ⊆ Out C3×C5⋊D42408-(C3xC5:D4).C2^2480,1096
(C3×C5⋊D4).2C22 = D20.38D6φ: C22/C2C2 ⊆ Out C3×C5⋊D42404(C3xC5:D4).2C2^2480,1076
(C3×C5⋊D4).3C22 = D20.39D6φ: C22/C2C2 ⊆ Out C3×C5⋊D42404-(C3xC5:D4).3C2^2480,1077
(C3×C5⋊D4).4C22 = C3×D4.10D10φ: C22/C2C2 ⊆ Out C3×C5⋊D42404(C3xC5:D4).4C2^2480,1147
(C3×C5⋊D4).5C22 = C3×Q8.10D10φ: trivial image2404(C3xC5:D4).5C2^2480,1144

׿
×
𝔽